HIGH-RESOLUTION MAPPING OF HUMAN TASTANT-SELECTIVE CORTEX

Karsta M. C. Benza, Michael Hankeb,c, Emanuele Porcua,b, Tömme Noesselta,c
karsta.benz@ovgu.de - OvG University Magdeburg, Germany

Objective

Tastant-specific neuronal populations were found in rat1 and macaque insula2. Similar patterns were shown in humans3.

Our aim:

Mapping the distribution of tastant-specific regions in the human insula using a script controlled automatic tastant delivery system

Materials and methods

Subjects
Sample size: n = 24
Fasted at least 3 hours prior to scanning, rated stimulus material pre and post scanning session

Stimulation

- NaCl: salty
- Glucose: sweet
- Quinine: bitter
- Citric acid: sour
- KCl + NaHCO\textsubscript{3}: neutral

Task

- Block design
- Passive tasting

Data acquisition

High resolution fMRI
1.4 mm3 in-plane resolution

Results

Single subject univariate analysis (SPM) revealed non-overlapping taste-specific representations in all subjects. Exact anatomical locations within the insula varied across participants.

Moreover, 12 subjects showed bilateral insula activations for all tastants. For the other half 3 subjects failed to show activations for one or two tastants in the left insula, while this is the case for 9 subjects in the right insula.

MNI coordinates for peak tastants specific activation

<table>
<thead>
<tr>
<th>Taste</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>t</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>salty</td>
<td>-37</td>
<td>3</td>
<td>-2</td>
<td>2.90</td>
<td>38</td>
<td>4</td>
<td>-3</td>
<td>2.98</td>
</tr>
<tr>
<td>sweet</td>
<td>-36</td>
<td>4</td>
<td>-3</td>
<td>2.88</td>
<td>38</td>
<td>6</td>
<td>-1</td>
<td>2.95</td>
</tr>
<tr>
<td>bitter</td>
<td>-37</td>
<td>6</td>
<td>-2</td>
<td>2.91</td>
<td>40</td>
<td>5</td>
<td>-6</td>
<td>3.16</td>
</tr>
<tr>
<td>sour</td>
<td>-37</td>
<td>5</td>
<td>-4</td>
<td>2.87</td>
<td>38</td>
<td>10</td>
<td>-4</td>
<td>2.80</td>
</tr>
</tbody>
</table>

p < .05, uncorrected. Mean MNI coordinates of voxels with highest taste specific activation in the left and right insula across all subjects. All tastants were compared against neutral solution.

Tastant specific response profiles

Peak tastant specific activation

Visualization of group mean peak voxels per tastant. Green: salty, dark blue: sweet, cyan: bitter, yellow: sour

Repeated measures ANOVA revealed a double interaction between tastant and insular region, p < .001. Error bars represent the 95% confidence interval. Mean beta estimates of insula voxels which showed the highest activation for respective tastant. See table above. Analysis showed no main effect for hemisphere therefore data shown is averaged across hemispheres. *Post hoc test: p < .001, Bonferroni corrected.

Conclusion

FMRI can be used to reliably identify tastant-specific representations in the human gustatory cortex

References